Augmentation of cellular and humoral immune responses to HPV16 and HPV18 E6 and E7 antigens by VGX-3100
نویسندگان
چکیده
We have previously demonstrated the immunogenicity of VGX-3100, a multicomponent DNA immunotherapy for the treatment of Human Papillomavirus (HPV)16/18-positive CIN2/3 in a phase 1 clinical trial. Here, we report on the ability to boost immune responses with an additional dose of VGX-3100. Patients completing our initial phase 1 trial were offered enrollment into a follow on trial consisting of a single boost dose of VGX-3100. Data show both cellular and humoral immune responses could be augmented above pre-boost levels, including the induction of interferon (IFN)γ production, tumor necrosis factor (TNF)α production, CD8+ T cell activation and the synthesis of lytic proteins. Moreover, observation of antigen-specific regulation of immune-related gene transcripts suggests the induction of a proinflammatory response following the boost. Analysis of T cell receptor (TCR) sequencing suggests the localization of putative HPV-specific T cell clones to the cervical mucosa, which underscores the putative mechanism of action of lesion regression and HPV16/18 elimination noted in our double-blind placebo-controlled phase 2B trial. Taken together, these data indicate that VGX-3100 drives the induction of robust cellular and humoral immune responses that can be augmented by a fourth "booster" dose. These data could be important in the scope of increasing the clinical efficacy rate of VGX-3100.
منابع مشابه
E6^E7, a Novel Splice Isoform Protein of Human Papillomavirus 16, Stabilizes Viral E6 and E7 Oncoproteins via HSP90 and GRP78
UNLABELLED Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of...
متن کاملبررسی پاسخ تکثیری لنفوسیتهای طحالی حاصل از تزریق پلاسمید کد کننده E7-HPV16 در مدل موش توموری پاپیلوماویروس
Background & Objective: Human papillomavirus (HPV) oncoproteins, including E6 and E7 are constitutively expressed in cervical cancer cells. These proteins are ideal targets to be used for developing therapeutic vaccines against existing HPV-associated carcinomas. The aim of this study was to measure the proliferation response rate of splenic lymphocytes derived from E7-HPV16 encoding plasmid in...
متن کاملStrong Immune Responses Induced by a DNA Vaccine Containing HPV16 Truncated E7 C-terminal Linked to HSP70 Gene
Background: Vaccines capable of controlling tumor virus based infections are found difficult to develop due to the consistence latent infection in the host. DNA vaccines are attractive tools for the development of HPV vaccines and inducing antigen-specific immunity owing to the stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency b...
متن کاملDNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens.
OBJECTIVE Vaccination based on tumor antigen is an attractive strategy for cancer prevention and therapy. Cervical cancer is highly associated with human papillomavirus, especially type 16. We developed DNA vaccines encoding heat shock protein 60 (HSP60) linked to HPV16 E6 or E7 to test if HSP60 chimeric DNA vaccines may generate strong E6 and/or E7-specific immune response and anti-tumor effec...
متن کاملAPOBEC3A possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer.
Cervical cancer is the second most common cancer among women worldwide and is the leading cause of deaths in developing countries. Persistent infections with a subset of HPVs, called "high-risk HPVs", including HPV16 and HPV18, are the primary cause of cervical cancer. The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of proteins is a group of cellular enzymes...
متن کامل